Responses to comments on the paper two-dimensional Sc2C A reversible and high capacity hydrogen storage material predicted by first-principles calculations

ElsevierInternational Journal of Hydrogen EnergyShow moreAdd to Mendeleyhttps://doi.org/10.1016/j.ijhydene.2022.01.030Get rights and contentAbstract

A recent commentary by Santhosh and Ravindran on our paper (Int. J. Hydrogen Energy 2014, 39:10,606) demonstrated that the interaction between H2 and MXene (Sc2C and Ti2C) phases are not Kubas-type and should be of weak physisorption, and thus made a conclusion that 2D Sc2C and Ti2C are not suitable for practical hydrogen storage applications. In this responses, we recalculated hydrogen adsorption on 2D Sc2C and Ti2C by using different exchange-correlation functionals. And based on the calculated results, bare MXenes (especially the Ti2C) are suitable as hydrogen storage materials at temperatures of several tens degrees lower than room temperature. And the hydrogen adsorptions on the MXenes terminated with oxygen group were also investigated. Among the Ti2C, Sc2C and their oxygen-functional counterparts, the binding energy of H2 on Sc2CO2 surface is the closest to the ideal range of 0.16-0.42 eV/H2 at ambient conditions, and thus the Sc2C with oxygen group is expected to be more suitable as hydrogen storage materials.

Keywords

MXenes

Hydrogen storage

First-principles calculation

Exchange-correlation functionals

Recommended articlesCiting articles (0)

View full text

(C) 2022 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.

Recommended articles

No articles found.

Citing articles

Belum ada Komentar untuk "Responses to comments on the paper two-dimensional Sc2C A reversible and high capacity hydrogen storage material predicted by first-principles calculations"

Posting Komentar

Advertisement